пожар это
Теплота парообразования
Теплота парообразования — количество теплоты, которое необходимо сообщить веществу при постоянном давлении и температуре, чтобы перевести его из жидкого состояния в газообразное (в пар). Значение показателя теплоты парообразования необходимо для расчёта охлаждающего или нагревающего действия охладителя и теплоносителя при разработке мер пожарной безопасности в технологических процессах.
Лит.: Монахов В.Т. Методы исследования пожарной опасности веществ. М., 1979.
Теплостойкость
Теплостойкость — способность вещества (материала), изделия к сохранению своих физико-химических характеристик и эксплуатационных свойств при повышении температуры в условиях пожара.
В зависимости от вида изделий и их назначения используют различные методы определения теплостойкости для конструкционных твёрдых веществ (материалов) теплостойкость оценивают по изменению жёсткости; показателем служит так называемая
деформационная теплостойкость — температура, при которой начинает развиваться недопустимо большая деформация образца, находящегося под определенной нагрузкой и нагреваемого с определенной скоростью. Теплостойкость строительных конструкций при пожарно-технической классификации характеризуется их огнестойкостью и пожарной опасностью, определяемыми стандартными методами. См. также Опасные факторы пожара.
Лит.: СНиП 21-01-97*. Пожарная безопасность зданий и сооружений.
Теплопроводность
Теплопроводность — перенос энергии в форме теплоты в неравномерно нагретой среде в результате теплового движения и взаимодействия составляющих её частиц. Теплопроводность приводит к выравниванию температуры среды (тела). В газах перенос энергии осуществляется хаотически движущимися молекулами, в металлах — в основном электронами проводимости, в диэлектриках — за счёт связанных колебаний частиц, образующих кристаллическую решётку. Для изотропной среды справедлив закон Фурье, согласно которому вектор плотности теплового потока пропорционален и противоположен по направлению градиенту температуры.
Величина, характеризующая теплопроводящие свойства материала и входящая в виде коэффициента пропорциональности в закон Фурье, называется коэффициент теплопроводности, который зависит от химической природы среды и её состояния.
Теплопроводность играет важную роль при определении пределов огнестойкости строительных конструкций при пожаре, а также при решении задачи защиты личного состава при тушении пожара.
Теплоперенос
Теплоперенос — перенос энергии в виде конвективного потока, теплового излучения, теплопроводности. См. также Тепловое воздействие.
Теплоперенос учитывается при оценке пожарной опасности различных объектов (помещения, сооружения, технологические объекты и т. д.).
Теплопередача
Теплопередача — процесс теплообмена между двумя теплоносителями или иными средами, которые могут находиться во взаимодействии (например, в непосредственном контакте). Различают 3 вида теплопередач: кондуктивный, конвективный и лучистый. Кондуктивная теплопередача — процесс передачи энергии от более нагретых частей тела к менее нагретым, обусловленный хаотическим (тепловым) движением микрочастиц (атомов, молекул, свободных электронов). Конвективная теплопередача — процесс передачи энергии, обусловленный совместным действием процесса переноса энергии путём перемещения жидкости или газа в пространстве из области с одной температурой в область с другой температурой, а также процесса теплопроводности. Лучистая теплопередача — процесс передачи энергии, при котором перенос энергии в пространстве осуществляется электромагнитными волнами.
Интенсивность теплопередачи характеризуется коэффициент теплопередачи, равным плотности теплового потока на стенке (поверхности раздела), отнесённой к температурному напору между средами (теплоносителями).
Теплопередача имеет важное значение для решения задач, связанных с нагревом строительных конструкций в условиях пожара.
Лит.: Кошмаров Ю.А., Башкирцен М.П. Термодинамика и теплопередача в пожарном деле. М., 1987.